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Abstract

By assuming the existence of the sequential fourth generation to the minimal supersym-
metric standard model (MSSM), we study the possibility of a strongly first-order electroweak
phase transition. We find that there is a parameter region of the MSSM where the elec-
troweak phase transition is strongly first order. In that parameter region, the mass of the
lighter scalar Higgs boson is calculated to be above the experimental lower bound, and the
scalar quarks of the third and the fourth generations are heavier than the corresponding
quarks.
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I. Introduction

As a mechanism to explain the baryon asymmetry of the universe, the electroweak baryogenesis is
given wide attentions, since it can be tested in the future high energy experiments [1]. Sakharov
have several decades ago established the three essential conditions for generating dynamically
the baryon asymmetry of the universe from a baryon-symmetric universe [2]. As is well known,
the three conditions are the presence of baryon number violation, the violation of both C and CP,
and a departure from thermal equilibrium. The possibility of the electroweak phase transition
has already been exhaustively studied, which can provide the baryon number violation and the
violation of both C and CP. The remaining Sakharov condition, the departure from thermal
equilibrium, may be fulfilled at a weak scale temperatures if the nature of the electroweak phase
transition is first order. The difficulty of the standard model (SM) is that the strength of the first
order electroweak phase transition, which must be strong enough for preserving the generated
baryon asymmetry at the electroweak scale, appears too weak for the experimentally allowed
mass of the SM scalar Higgs boson [3].

Thus, it seems that electroweak baryogenesis requires a new physics beyond the SM at weak
scale [4]. The minimal supersymmetric standard model (MSSM) has been studied intensively
within the context of electroweak baryogenesis. It is observed that, if one of the scalar top quark
has a mass smaller than top quark mass, the MSSM may possess a parameter region where the
electroweak phase transition is strong enough [5]. In this scenario of a light scalar top quark, the
requirement that the electroweak phase transition should be strongly first order is equivalent to
the imposition of an upper bound of about 120 GeV on the lightest Higgs scalar boson mass of
the MSSM.

In this paper, we examine yet another possibility for the strongly first-order electroweak
phase transition in the MSSM. We study the effect of the fourth generation of quarks on the
strength of the first order electroweak phase transition in the MSSM. Although the number of
the SM neutrino species has already been fixed experimentally as three, the existence of the
sequential fourth generation is still anticipated and searched. In principle, the SM, as well
as the MSSM, can accommodate any number of generations. In various contexts, the MSSM
with four generations has been studied [6-8]. For us, the fourth generation of quarks are found
to enhance the strength of the first-order electroweak phase transition, while the scalar Higgs
boson mass is calculated to be above the experimental lower bound, and the scalar quarks of the
third generations are comparable to the supersymmetry breaking scale (MSUSY = 1 TeV), in a
reasonably wide region of parameter space in the MSSM. In our scenario, a light scalar quark is
not necessary to ensure the first order electroweak phase transition be strong; the scalar quarks
of the third and the fourth generations may be heavier than the corresponding quarks.

II. Higgs potential in decoupling limit without mixing

Let us study a particular, yet reasonable as well as plausible, form of the Higgs potential in the
MSSM with four generations of quarks for the electroweak phase transition. We consider only
the third and the fourth generations, and assume that there is no mixing between them. The
fourth generation appears simply in a repetitive manner. As is well known, there are two Higgs
doublets in the Higgs sector of the MSSM, namely, HT

1 = (H0
1 ,H−

1 ) and HT
2 = (H+

2 ,H0
2 ). After

electroweak symmetry breaking emerge five physical Higgs bosons: two neutral scalar Higgs
bosons (h ,H), one neutral pseudoscalar Higgs bosons (A), and a pair of charged Higgs bosons
(H±). We assume that the mass of h is lighter than that of H. At the tree level, the Higgs sector
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of the MSSM depends on only two free parameters. We take them to be the ratio tan β = v2/v1

of the two real vacuum expectation values (VEVs) v1 of H0
1 and v2 of H0

2 and mA, the mass of
A. In this paper, we assume that CP is conserved in the Higgs sector by choosing all parameters
in the effective Higgs potential to be real.

In the decoupling limit, where mA ≫ mZ , with fixed tan β, only one linear combination of
the two neutral scalar Higgs bosons,

φ =
√

2 cos βRe(H0
1 ) +

√
2 sin βRe(H0

2 ) , (1)

remains light at the electroweak scale [9]. In this limit, the tree-level Higgs potential at zero
temperature can be expressed in terms of φ as

V0(φ, 0) = −m2
0 φ2 +

λ

4
φ4 . (2)

Since all quartic terms have gauge coupling coefficients in the MSSM, the quartic Higgs self-
coupling λ is given as λ = (g2

1 + g2
2)/4. Note that there is an upper bound on the mass of h

as mh ≤ mZ | cos 2β| at the tree level in the MSSM. In this limit, the couplings of h to gauge
bosons and fermions are identical to the couplings of the SM Higgs boson, which implies that
one cannot distinguish phenomenologically the SM scalar Higgs boson from h [10]. Thus, one
might expect that mh has the same experimental lower bound as the SM scalar Higgs boson in
the decoupling limit [11]. The current experimental lower bound on the mass of the SM scalar
Higgs boson is about 114.5 GeV.

Now, at the one-loop level at zero temperature, the effective Higgs potential is given by

V (φ, 0) = V0(φ, 0) + V1(φ, 0) , (3)

where the one-loop contribution V1(φ, 0) at zero temperature is obtained via the effective po-
tential method as [12]

V1(φ, 0) =
∑

l

nlm
4
l (φ)

64π2

[

log

(

m2
l (φ)

Λ2

)

− 3

2

]

, (4)

where l stands for various participating particles: the gauge bosons W , Z, the third generation
quarks and scalar quarks t, b, t̃1, t̃2, b̃1 and b̃2, as well as the fourth generation quarks and
scalar quarks t′, b′, t̃′1, t̃′2, b̃′1 and b̃′2. The renormalization scale in the above one-loop effective
potential is set as Λ = mZ . The degrees of freedom for each particle are: nW = 6, nZ = 3,
nt = nb = −12, nt̃i

= n
b̃i

= 6 (i = 1, 2), nt′ = nb′ = −12, nt̃′
i

= n
b̃′
i

= 6 (i = 1, 2). Their field-

dependent masses are given by m2
W (φ) = g2

2φ
2/4, m2

Z(φ) = (g2
1+g2

2)φ
2/4, m2

t (φ) = h2
t sin β2φ2/2,

m2
b(φ) = h2

b cos β2φ2/2, m2
t′(φ) = h2

t′ sin β2φ2/2, m2
b′(φ) = h2

b′ cos β2φ2/2, and

m2
q̃1q̃2

(φ) =
m2

q̃L
(φ) + m2

q̃R
(φ)

2
∓

√

√

√

√

(

m2
q̃L

(φ) − m2
q̃R

(φ)

2

)2

+ Ã2
qm

2
q(φ) , (5)

with q = t, b, t′, b′. In the above expression for the scalar quark masses [13], we have

m2
t̃L

(φ) = m2
Q + m2

t (φ) +

(

1

2
− 2

3
sin2 θW

)

cos 2βm2
Z(φ) ,

m2
t̃R

(φ) = m2
U + m2

t (φ) +
2

3
sin2 θW cos 2βm2

Z(φ) ,

m2
b̃L

(φ) = m2
Q + m2

b(φ) +

(

−1

2
+

1

3
sin2 θW

)

cos 2βm2
Z(φ) ,
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m2
b̃R

(φ) = m2
D + m2

b(φ) − 1

3
sin2 θW cos 2βm2

Z(φ) , (6)

and similarly for the fourth generation by substituting with primed quantities, where sin θW is
the weak mixing angle.

The parameters Ãt, Ãb, Ãt′ and Ãb′ in the above expressions for the scalar quark masses
are given as Ãt = At − µ cot β, and Ãb = Ab − µ tan β, and similarly for the fourth generation.
Note that Ãt = 0 (Ãb = 0) does not necessarily imply that the right-handed and the left-handed
scalar top (bottom) quarks are degenerate in mass, since there is D-term contributions. Only if
D-term contributions to the scalar top (bottom) quark masses are neglected, Ãt = 0 (Ãb = 0)
would yield degenerate right-handed and left-handed scalar top (bottom) quarks.

However, we remark that the parameters Ãt, Ãb, Ãt′ and Ãb′ control the mixings between the
scalar top or scalar bottom masses in each generation. If these parameters are zero, there would
be no mixing between right-handed and left-handed scalar quarks of each generation. In this
paper, we assume that there is no mixing, taking Ãt = Ãb = Ãt′ = Ãb′ = 0 in the expressions
for the scalar quark masses. Therefore, we study the MSSM Higgs potential in the decoupling
limit without mixing.

The decoupling limit without mixing is an optimal situation for electroweak phase transi-
tion to be strongly first order. The case without mixing is more favorable for the first order
electroweak phase transition to be strong than the case with mixing, as the strength of the
electroweak phase transition is found to decrease when the mixings between scalar quarks are
taken into account [13]. Also, one can notice, for example, in Fig. 2 of Ref. [14], that the
strength of the electroweak phase transition increases as mA increases in the MSSM with three
generations. Thus, we study the MSSM Higgs potential in circumstances that enhance the first
order electroweak phase transition.

Now, the renormalized parameter m2
0 in the Higgs potential can be eliminated by the mini-

mum condition. By calculating the first derivative of V (φ, 0) with respect to φ, m2
0 is expressed

as

m2
0 =

1

2
m2

Z cos2 2β +
3m4

W

8π2v2

[

log

(

m2
W

Λ2

)

− 1

]

+
3m4

Z

16π2v2

[

log

(

m2
Z

Λ2

)

− 1

]

− 3m4
t

4π2v2

[

log

(

m2
t

Λ2

)

− 1

]

− 3m4
b

4π2v2

[

log

(

m2
b

Λ2

)

− 1

]

− 3m4
t′

4π2v2

[

log

(

m2
t′

Λ2

)

− 1

]

− 3m4
b′

4π2v2

[

log

(

m2
b′

Λ2

)

− 1

]

+
∑

a

3m2
a

8π2v2
(m2

a − m2
Q)

[

log

(

m2
a

Λ2

)

− 1

]

+
∑

a′

3m2
a′

8π2v2
(m2

a′ − m2
Q′)

[

log

(

m2
a′

Λ2

)

− 1

]

, (7)

where a = t̃1, t̃2, b̃1, b̃2, and a′ = t̃′1, t̃′2, b̃′1, b̃′2, and v = 246 GeV. The mass of h at the one-loop
level in the decoupling limit without mixing at zero temperature is obtained by calculating the
second derivative of V (φ, 0) with respect to φ as

m2
h = m2

Z cos2 2β +
3m4

W

4π2v2
log

(

m2
W

Λ2

)

+
3m4

Z

8π2v2
log

(

m2
Z

Λ2

)

− 3m4
t

2π2v2
log

(

m2
t

Λ2

)

− 3m4
b

2π2v2
log

(

m2
b

Λ2

)
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− 3m4
t′

2π2v2
log

(

m2
t′

Λ2

)

− 3m4
b′

2π2v2
log

(

m2
b′

Λ2

)

+
∑

a

3(m2
a − m2

Q)2

4π2v2
log

(

m2
a

Λ2

)

+
∑

a′

3(m2
a′ − m2

Q′)2

4π2v2
log

(

m2
a′

Λ2

)

, (8)

where a = t̃1, t̃2, b̃1, b̃2, and a′ = t̃′1, t̃′2, b̃′1, b̃′2.
Now, we study the effect of finite temperature. The one-loop contribution at finite temper-

ature is given by [15]

V1(φ, T ) =
∑

l

nlT
4

2π2

∫

∞

0
dx x2 log

[

1 ± exp

(

−
√

x2 + m2
l (φ)/T 2

)]

, (9)

where l = W , Z, t, b, t̃1, t̃2, b̃1 and b̃2, t′, b′, t̃′1, t̃′2, b̃′1 and b̃′2. and the negative sign is for bosons
and the positive sign for fermions. The full one-loop effective potential at finite temperature
that we are considering can now be expressed as

V (φ, T ) = V0(φ, 0) + V1(φ, 0) + V1(φ, T ) . (10)

We perform the exact integration in V (φ, T ) instead of employing the high-temperature approx-
imation.

III. Numerical Analysis

At the tree level, we have only one free parameter tan β in the decoupling limit where mA ≫ mZ .
At the one-loop level, the number of free parameters increases as mt, mb, mt′ , mb′ , and mQ,
mQ′ are introduced to the one-loop contributions. To be concrete, we set mt = 175 GeV and mb

= 4.5 GeV, and we take for simplicity the soft SUSY breaking parameters as m2
Q = m2

U = m2
D,

and similarly for the fourth generation. Since we assume no mixing in the scalar quark sector,
we set Ãt = Ãb = Ãt′ = Ãb′ = 0. For the masses of the fourth generation quarks, there
are some experimental constraints. Some years ago, Tevatron data have set mb′ > 119 GeV,
and recently, from the search for long-lived charged massive particles at Tevatron come more
stringent experimental lower bounds of mb′ > 180 GeV and mt′ > 230 GeV [16]. With these
constraints in mind, we take mt′ = 250 GeV and mb′ = 200 GeV. Finally, we take 1 TeV for
the value of mQ from the SUSY breaking scale MSUSY = 1 TeV. Thus, our numerical analysis
involves two free parameters: tan β and mQ′ .

In Fig. 1, we show a typical behavior of V (φ, T ) as a function of φ, at a critical temperature
T = Tc = 84.225 GeV, where we take tan β = 20 and mQ′ = 100 GeV. As one can see in
the figure, we obtain the critical vacuum expectation value as vc = 149 GeV, and the ratio as
vc/Tc = 1.769. one can notice that the potential in Fig. 1 allows a strongly first-order electroweak
phase transition. The scalar quark masses are obtained as mt̃1

= 1013 GeV, mt̃2
= 1014 GeV,

m
b̃1

= 1000 GeV, m
b̃2

= 1001 GeV, mt̃′
1

= 263 GeV, mt̃′
2

= 266 GeV, m
b̃′
1

= 225 GeV, and

mb̃′
2

= 231 GeV.

For the mass of h, we obtain mh = 129 GeV with the parameter values of Fig. 1. This
number is a little larger than the experimental lower bound on the SM Higgs boson mass, 115
GeV. In the decoupling limit of mA ≫ mZ , the behavior of h is identical to that of the SM
Higgs boson. The search for a light Higgs boson in the MSSM by DELPHI collaboration without
mixing, where only three generations of quarks are taken into account, suggests that mh is about
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115 GeV, for tan β > 15 [17]. Comparing this number with our result of 129 GeV in Fig. 1,
we may well deduce that the difference is due to the contribution by the fourth generation of
quarks. The contribution by the fourth generation of quarks also enables the electroweak phase
transition strongly first order. Our value is compatible with the result of Ref. [6] where the
upper bound on the lightest Higgs boson mass is obtained as 152 GeV for small tan β and
96 ≤ mt′ ,mb′ ≤ 125 GeV in the MSSM with four generations of quarks. If the mass difference
between t′ and b′ is small, they may have smaller masses [7].

Now, let us study other regions of the parameter space. We vary mQ′ while fixing tan β = 20.
The masses of the third generation of scalar quarks are then the same as Fig. 1: mt̃1

= 1013 GeV,
mt̃2

= 1014 GeV, mb̃1
= 1000 GeV, and mb̃2

= 1001 GeV. The masses of the fourth generation
of scalar quarks, as well as other relevant quantities, are shown in Table I. The second row
of Table I for mQ′ = 100 GeV corresponds to the numerical result of Fig. 1. One can see
that the strength of the first order electroweak phase transition decreases as mQ′ increases until
mQ′ reaches 140 GeV, beyond which vc/Tc becomes less than 1. Thus, the electroweak phase
transition remains strongly first order for mQ′ ≤ 140 GeV.

We need to explore the boundary of the parameter space beyond which the electroweak phase
transition is no longer strongly first order. In Table I, one can see that vc/Tc ∼ 1 for tan β = 20
and mQ′ = 140 GeV. From this point, we examine several points of (mQ′ , tan β) which yield
vc/Tc ∼ 1, by adjusting Tc. For each value of tan β, we find the upper bound value of mQ′ ,
beyond which vc/Tc becomes less than 1. The result is shown in Table II. The fourth row of
Table II is corresponds to the fourth row of Table I. The numbers in Table II indicate that the
electroweak phase transition can be strongly first order for 2 ≤ tan β ≤ 40 if mQ′ ≤ 140 GeV.

In Fig. 2, we plot the numerical results of Table 2 on (mQ′ , tan β)-plane. The dashed curves
denote the contours of mh. The solid curve denotes the contour of vc/Tc = 1. On the left-
hand side of the solid curve we have vc/Tc ≥ 1, that is, the electroweak phase transition is
strongly first order in the region to the left of the solid curve. Consequently, we find a region in
the parameter space of the MSSM with four generations of quarks where a strongly first order
electroweak phase transition is allowed. The parameter values of the allowed region are within
the experimental constraints, and yield mh consistent with experimental lower bound.

Table I: Some values of mQ′ for which the first order electroweak phase transition is strong
(vc/Tc > 1.0). The critical temperatures Tc are obtained for which the finite temperature
effective potential has two degenerate vacua. The relevant parameter values are the same as
Fig. 1, that is, tan β = 20, mQ = 1 TeV, mt′ = 250 GeV, and mb′ = 200 GeV.

mQ′ mt̃′
1

mt̃′
2

m
b̃′
1

m
b̃′
2

mh Tc vc vc/Tc

50 249 252 207 214 122 76.090 185 2.431

100 263 266 225 231 129 84.225 149 1.769

130 276 279 239 245 134 90.180 113 1.253

140 281 284 245 251 136 92.268 93 1.007

150 286 289 251 256 138 94.384 76 0.805
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Table II: Some values of (mQ′ , tan β) beyond which the first order electroweak phase transition
is strong (vc/Tc ∼ 1.0). The relevant parameters values are the same as Table I. The masses of
the scalar quarks of the fourth generation are calculated as about mt̃′

1

= 282 GeV, mt̃′
2

= 285
GeV, m

b̃′
1

= 246 GeV, m
b̃′
2

= 251 GeV.

tan β mQ′ mh Tc vc vc/Tc

2 147 120 87.163 88 1.009

5 142 133 91.256 92 1.008

10 140 135 91.965 92 1.000

20 140 136 92.268 93 1.007

30 140 137 92.326 93 1.007

40 140 140 92.346 93 1.007

IV. Conclusions

Up to now, we study the possibility of a strongly first order electroweak phase transition in the
MSSM with sequential four generations of quarks. We assume that mA ≫ mZ and Ãl = 0(l =
t, b, t′, b′), that is, we work in the decoupling limit and in the case of no mixing between scalar
quarks. We choose the relevant parameter values to be: mt = 175 GeV, mb = 4.5 GeV, mt′ =
250 GeV, mb′ = 200 GeV, and mQ = 1 TeV. We take m2

Q = m2
U = m2

D, and similarly for the
fourth generation. These numbers are consistent with experimental constraints.

We search the parameter space of (mQ′ , tan β)-plane to examine if the electroweak phase
transition is strongly first order. We find that there are regions in the (mQ′ , tan β)-plane that
satisfy our criterion of vc/Tc ≥ 1. For 2 ≤ tan β ≤ 40, the electroweak phase transition is
strongly first order in the region where mQ′ ≤ 140 GeV. The scalar quark masses of the fourth
generation are controlled mainly by the soft SUSY breaking parameter mQ′ . In the region where
the electroweak phase transition is strongly first order, the scalar quark masses of the fourth
generation are obtained to be larger than the quark masses of the fourth generation.
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Figure Captions

Fig. 1: The plot of V (φ, T ) as a function of φ, for the critical temperature Tc = 84.225 GeV.
The relevant parameter values are set as follows: tan β = 20, mQ = 1 TeV, mt′ = 250 GeV,
mb′ = 200 GeV, and mQ′ = 100 GeV. One can see that the electroweak phase transition is
first order. The critical VEV is obtained as vc = 149 GeV. Thus, vc/Tc = 1.769, and the first
order electroweak phase transition is strong. The potential in this figure yields mh = 129 GeV,
mt̃1
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Fig. 2: Plots of the lightest scalar Higgs boson mass and the criterion of the strongly first order
electroweak phase transition in the (mQ′ , tan β)-plane. The remaining relevant parameters are
set as mQ = 1 TeV, mt′ = 250 GeV, and mb′ = 200 GeV. The solid curve is the contour of
vc/Tc = 1, and the dashed curves are the contours of mh = 115, 120, 125, 130, 135, and 140
GeV. The masses of the scalar quarks of the third generation are calculated the same as Fig. 1,
that is, mt̃1

= 1013 GeV, mt̃2
= 1014 GeV, mb̃1

= 1000 GeV, and mb̃2
= 1001 GeV. The region

to the left-hand side of the solid curve and above the dashed curve of mh = 115 GeV is where
the first order electroweak phase transition is strong (vc/Tc ≥ 1) and mh is consistent with the
experimental lower bound.
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The relevant parameter values are set as follows: tan β = 20, mQ = 1 TeV, mt′ = 250 GeV,
mb′ = 200 GeV, and mQ′ = 100 GeV. One can see that the electroweak phase transition is
first order. The critical VEV is obtained as vc = 149 GeV. Thus, vc/Tc = 1.769, and the first
order electroweak phase transition is strong. The potential in this figure yields mh = 129 GeV,
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Fig. 2: Plots of the lightest scalar Higgs boson mass and the criterion of the strongly first order
electroweak phase transition in the (mQ′ , tan β)-plane. The remaining relevant parameters are
set as mQ = 1 TeV, mt′ = 250 GeV, and mb′ = 200 GeV. The solid curve is the contour of
vc/Tc = 1, and the dashed curves are the contours of mh = 115, 120, 125, 130, 135, and 140
GeV. The masses of the scalar quarks of the third generation are calculated the same as Fig. 1,
that is, mt̃1

= 1013 GeV, mt̃2
= 1014 GeV, m

b̃1
= 1000 GeV, and m

b̃2
= 1001 GeV. The region

to the left-hand side of the solid curve and above the dashed curve of mh = 115 GeV is where
the first order electroweak phase transition is strong (vc/Tc ≥ 1) and mh is consistent with the
experimental lower bound.
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